163 research outputs found

    Code Construction and Decoding Algorithms for Semi-Quantitative Group Testing with Nonuniform Thresholds

    Full text link
    We analyze a new group testing scheme, termed semi-quantitative group testing, which may be viewed as a concatenation of an adder channel and a discrete quantizer. Our focus is on non-uniform quantizers with arbitrary thresholds. For the most general semi-quantitative group testing model, we define three new families of sequences capturing the constraints on the code design imposed by the choice of the thresholds. The sequences represent extensions and generalizations of Bh and certain types of super-increasing and lexicographically ordered sequences, and they lead to code structures amenable for efficient recursive decoding. We describe the decoding methods and provide an accompanying computational complexity and performance analysis

    Behavior and Strength of Pultruded FRP I-Section Columns Including Uniaxial and Biaxial Bending

    Get PDF
    This thesis presents the outcome of a study of the behavior and strength of pultruded glass fiber reinforced polymer (FRP) I-section columns including uniaxial and biaxial applied bending moments. Also included in the study is a critical assessment of ASCE-LRFD Pre-standard for pultruded FRP structures in view of the rigorous analysis presented herein. The theoretical solution is based on a system of three coupled differential equations of equilibrium combined with pinned flexural and torsional boundary conditions. Effects of induced warping due to second-order terms as well as initial out-of-straightness are accounted-for in the governing differential equations. Detailed investigations into the nonlinear response up to material cracking are conducted for centrally loaded column, uniaxially loaded beam-columns loaded about the cross-sectional minor axis and those loaded about the major axis with continuous lateral support, and biaxially loaded beam-columns. Serious flaws in the ASCE-LRFD Pre-Standard are found in light of the rigorous analysis presented in this thesis such as the strength prediction expressions for centrally loaded columns as well as those with uniaxial and biaxial bending. It is also found that induced warping normal stresses due to second-order torsional effects are not negligible. The results presented herein can aid in the development of accurate strength prediction formulae to replace the flawed ones in the ASCE-LRFD Pre-Standard

    Comparing the effects of 8 weeks and 12 weeks of corticosteroid therapy on serum 25-hydroxyvitamin D levels in children with nephrotic syndrome in the recovery phase

    Get PDF
    Background: Nephrotic syndrome is a relatively common problem in childhood that can be caused by various diseases. These patients are susceptible to osteoporosis due to the nature of the disease and the complication of steroid therapy. Therefore, the aim of this study was to compare serum 25-hydroxyvitamin D levels in children with nephrotic syndrome in the recovery phase and under the two different treatment regimens. Materials and Methods: This clinical trial study was performed on 68 children with primary nephrotic syndrome referred to the Nephrology Clinic of Besat Hospital in Hamedan in 2014. Thirty-four patients were treated for 8 weeks and 34 patients were treated for 12 weeks. The two groups were matched for age and sex. At the end of the treatment, serum 25-hydroxyvitamin D levels were measured and compared in the two groups and the rate of relapse was also assessed. Results: There was no significant difference between the two groups in age and sex. The mean of vitamin D levels in the 8-week treatment group was significantly higher than the other group (21.61±11.39 and 16.18±9.79, respectively), and this difference was statistically significant (P=0.039). Absence of relapse was 47.1 in the 8-week treatment group and 73.5 in the 12-week treatment group, this difference was also statistically significant (P= 0.026). Conclusion: The recurrence rate was significantly lower in the 12-week treatment compared to the 8-week treatment. However, vitamin D levels significantly decreased in this treatment group compared to the other group

    New group testing paradigms: from practice to theory

    Get PDF
    We propose a novel group testing framework, termed semi-quantitative group testing, motivated by a class of problems arising in genome screening experiments in addition to other applications such as interpretable rule learning for decision making. Semi-quantitative group testing (SQGT) is a (possibly) non-binary pooling scheme that may be viewed as a concatenation of an adder channel and an integer-valued quantizer. In its full generality, SQGT may be viewed as a unifying framework for group testing, in the sense that most group testing models are special instances of SQGT. For the new testing scheme, we define the notion of SQ-disjunct and SQ-separable test matrices, representing generalizations of classical disjunct and separable matrices. We describe combinatorial and probabilistic constructions for such matrices without considering any restriction on the thresholds of the SQGT model (i.e. SQGT with arbitrary thresholds). Then, we focus on the important special case in which the thresholds are equidistant, and construct SQ-disjunct and SQ-separable matrices for this model. While for most of the constructions described in this dissertation, it is assumed that the number of defectives is much smaller than total number of test subjects, we also consider the case in which there is no restriction on the number of defectives and they may be as large as the total number of subjects. For the constructed matrices, we describe a number of efficient decoding algorithms based on algebraic methods and message passing on graphical models. Finally, we introduce the novel probabilistic group testing framework of Poisson group testing, applicable to dynamic testing with diminishing relative rates of defectives. For this new model, we consider both nonadaptive and adaptive testing schemes and develop lower bounds and tight constructive upper bounds on the number of required tests

    Poisson Group Testing: A Probabilistic Model for Boolean Compressed Sensing

    Full text link
    We introduce a novel probabilistic group testing framework, termed Poisson group testing, in which the number of defectives follows a right-truncated Poisson distribution. The Poisson model has a number of new applications, including dynamic testing with diminishing relative rates of defectives. We consider both nonadaptive and semi-adaptive identification methods. For nonadaptive methods, we derive a lower bound on the number of tests required to identify the defectives with a probability of error that asymptotically converges to zero; in addition, we propose test matrix constructions for which the number of tests closely matches the lower bound. For semi-adaptive methods, we describe a lower bound on the expected number of tests required to identify the defectives with zero error probability. In addition, we propose a stage-wise reconstruction algorithm for which the expected number of tests is only a constant factor away from the lower bound. The methods rely only on an estimate of the average number of defectives, rather than on the individual probabilities of subjects being defective

    Bioceramic Scaffolds

    Get PDF
    Millions of peoples in the world suffer from their bone damage tissues by disease or trauma. Every day, thousands of surgical procedures are performed to replace or repair these tissues. The availability of these tissues is a big problem, and their costs are expensive. The repair of these defects has become a major clinical and socioeconomic need with the increase of aging population and social development. The emerge of tissue engineering (TE) is considered as a glimmer of hope to contribute in solving this problem. It aims at the regeneration of damaged tissues with restoring and maintaining the function of human bone tissues using the combination of cell biology, materials science, and engineering principles. In this chapter, the current state of the tissue engineering in particular bioceramic scaffolds was discussed. Concept of tissue engineering was explored. Bioceramic scaffold materials, their processing techniques, challenges taken into consideration the design of the scaffolds, and their in-vitro and in-vivo studies were highlighted. The scaffolds with extra-functionalities such as drug release ability and clinical applications were mentioned
    • …
    corecore